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READ THESE INSTRUCTIONS FIRST

Answer all questions.
Write your answers on the Printed Answer Booklet. Follow the instructions on the front cover of the answer 
booklet.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in 
degrees, unless a different level of accuracy is specified in the question.
You are expected to use an approved graphing calculator.
Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise.
Where unsupported answers from a graphing calculator are not allowed in a question, you must present the 
mathematical steps using mathematical notations and not calculator commands.
You must show all necessary working clearly.

The number of marks is given in brackets [  ] at the end of each question or part question.
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1 	 The curve with equation e ey x x
2

1

2

1

= +
− , for 0 ⩽ x ⩽ ln 2, is rotated through 2π radians about the x-axis. 

	 Find the exact value of the surface area generated.�  [5]

2 	 The sequence {un} is given by u1 = 2 and un+1 = k u
12

n
−  (n ⩾ 1), where k is a given real constant.

	 Use your graphing calculator to describe the behaviour of {un} in each of the cases:

	• k = 8,
	• k = 7,
	• k = 6,
	• k = 5. �  [6]

3 	 The equation f(x) = 0 has a root α. Various numerical methods which are used to determine the value of 
α (to a suitable degree of accuracy) generate a sequence of approximations, {xn}, starting with an initial 
approximation, x0. One such method is Halley’s method, with iteration formula
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	 (a)	 The Newton-Raphson method and Halley’s method are both used to find approximations to the 
cube root of 2, using f(x) = x3 – 2 and x0 = 1. For each method, determine the values of x1 and x2, 
giving each answer correct to 4 decimal places.�  [5]

	 (b)	 By comparing the iteration formulae for these two methods, state the conditions under which the 
two methods would give approximately equal values of xn+1 for a given xn.�  [2]

4 	 The area bounded by the curve with equation y = x + 2 sin x, for 0 ⩽ x ⩽ 4π, and the x-axis is rotated 
through one full turn about the y-axis. The volume generated is denoted by V.

	 (a)	 With the aid of a sketch graph, explain why it is more appropriate to determine the exact value of 
V using the shell method (rather than the disc method).�  [2]

	 (b) 	 Use the shell method to determine the exact value of V.�  [5]
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5 	 The surface S has equation z = f(x, y), where f(x, y) = y
x

x
y4

2

2

+  + 3xy, for x, y > 0. The point A on S has 

	 coordinates (1, 2, 10).

	 (a)	 Determine the values of fx, fy, fxx, fyy, fxy and fyx at A.�  [7]

	 The quadratic approximation for S in the region of A is given by z = Q(x, y).

	 (b)	 Show that Q(x, y) can be written in the form 2(x + 
2

1 )2 + y 2 + k, where k is a rational number to be 
determined.�  [3]

6	 (a)	 (i)	 Solve the equation z7 = i, giving your answers in the form r eiθ, where r > 0 and –π < θ ⩽ π.   
�  [3]

		  (ii)	 Hence, or otherwise, solve the equation 
i

i
z
3

7

+
=

J

L
KK

N

P
OO , giving your answers in a similar form.  

�  [3]

	 (b) 	 (i) 	 On the same Argand diagram, sketch the loci of points given by each of the following 
equations:

L1: iz 3 2 2− + =` j ,

L2: arg z 3
3

− =
r` j .

�  [3]

		  (ii)	 Find, in the form x + iy, the complex number which represents the point in the Argand diagram 
which is on both L1 and L2.�  [2]

7 	 The curve C has polar equation r = 2(1 – cos θ), 0 ⩽ θ ⩽ 2π.

	 (a)	 Sketch C.�  [1]

	 (b)	 Find the total length of C. �  [5]

	 (c)	 By considering the curve D with polar equation r = 2(1 – sin θ), 0 ⩽ θ ⩽ 2π, determine the exact 

		  value of sin dx x1
0

2

−
ry .�  [5]
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8 	 The matrices A and B are such that A = 
k

k
1

2

4
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 and B = k

2
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	 (a)	 (i)	 Determine AB.�  [3]

		  (ii)	 Show that, when k = 2, B = A–1.�  [1]

	 The matrix M has eigenvalues λ1 = 1, λ2 = –1 and λ3 = 2, with corresponding eigenvectors u1 = 
2

1

2−

J

L

K
K
KK

N

P

O
O
OO
, 

	 u2 = 
4

0

1−

J

L

K
K
KK

N

P

O
O
OO
 and u3 = 

3

2

2

−

J

L

K
K
KK

N

P

O
O
OO
 respectively. 

	 (b)	 (i)	 State, with justification, whether u1, u2 and u3 form a basis for the space of column vectors of 

			   the form 
a
b
c

J

L

K
K
KK

N

P

O
O
OO
, where a, b and c are real.�  [1]

		  (ii)	 Given that the vector v = 
1

14

20−

J

L

K
K
KK

N

P

O
O
OO
 can be expressed in the form v = 4u1 + 2u2 – 5u3, evaluate 

			   M7v without calculating any power of M.�  [3]

	 (c)	 Showing all necessary working, find M as a single 3 × 3 matrix.�  [4]
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9 	 The sequence {Xn} is defined by 

X0 = 
16

1 , X1 = 
16

17  and Xn+1 = 34Xn – Xn–1 for n ⩾ 1.

	 (a)	 Determine the solution of this second-order recurrence system.�  [5]

	 The sequence {Yn} is defined by Yn = X
16

1

n
−  for all n ⩾ 0,

	 (b)	 Calculate the values of Yn for n = 0 to 4.�  [2]

	 (c)	 (i)	 It is given that the sequence {Yn} satisfies a second-order recurrence relation. Use your 
answers to part (b) to write this recurrence relation down.�  [1]

		  (ii)	 Write down, in the form a + b 2 , where a and b are integers, the positive square-root of 
17 + 12 2 .�  [1]

		  (iii)	 Hence, without solving the recurrence system for {Yn}, and in either order:

	• find the solution for Yn as a function of n;

	• show that X
16

1

n
-d n is the square of an integer for all integers n ⩾ 0.�  [5]
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10	 [In this question, all variables are in standard S.I. units.]

	 An object P of constant mass m moves in a vertical plane. At time t, its displacement from the origin 
O is given by the vector r = xi + yj , where x and y are P’s linear displacements in the directions of the 
horizontal and vertical axes through O, as shown on the diagram below.

	 Also, at time t, the velocity of P is v = ẋi + ẏj and its acceleration is a = ẍi + ÿj.

2 m

O

y

x

α

300 m s–1

	 At time t = 0, P is projected from the point 2 m directly above O with speed 300 m s–1 at an angle 
α = tan–1 

24

7  above the horizontal. 

	 (a)	 State the initial position vector, r0, of P, and explain why v0, the initial velocity vector of P, is 
given by v0 = 288i + 84j.�  [1]

	 Newton’s Second Law states that the vector sum of all of the forces that act on P is equal to the product 
ma. [The sign of each force represents its direction of application.]

	 The subsequent motion of P is modelled in the following way. There are only three forces acting on P: 

	• its weight, of magnitude mg, acting vertically downwards (where g = 9.8 m s–2, is the acceleration 
due to gravity)

	• a resistive force, R, for positive constant k, which directly opposes the motion of P and is 
proportional to the velocity v

	• a second resistive force, S, due to the wind which is blowing horizontally in the negative 
x direction. S is taken to be proportional to the horizontal displacement of P from O. 

	 (b)	 Use Newton’s Second Law to justify the statement that P’s motion is described by the vector 
equation a + kv = –lxi – gj, for positive constants k and l. �  [2]

	 (c)	 Given that k = 1.2 and l = 0.2, 

		  (i)	 write down the differential equation that governs the motion of P in the positive x direction, 
and hence show that x = 360(e–0.2t – e–t ); �  [4]

		  (ii)	 write down the differential equation that governs the motion of P in the positive y direction, 
and hence determine the horizontal displacement of P at the instant when it lands on the 
x-axis.    � [10]
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